Posts com a tag "Instalação"

Chocadeira com lâmpada ou resistência: qual a melhor opção?

13/03/2019 - Chocadeiras, Controladores de Temperatura
Que o controle de temperatura é essencial para a eficiência da chocadeira já é sabido de todos. A temperatura no interior da chocadeira deve se manter o mais estável possível para que a taxa de eclosão seja satisfatória. Por isso esses equipamentos costumam utilizar um termostato digital para acionar um sistema de aquecimento. Geralmente são utilizados um destes dois tipos de aquecimento: lâmpada ou resistência elétrica. Neste post vamos apresentar as características de ambos para que você possa escolher a melhor opção. Saída a relé ou Saída TRIAC? Antes de explicarmos as diferenças de utilizar lâmpada ou resistência elétrica na sua chocadeira, é importante esclarecermos uma informação sobre os controladores de temperatura. Geralmente os controladores destinados ao mercado de chocadeiras possuem uma saída específica para o controle de temperatura e saídas extras para outras funções (viragem dos ovos, controle de umidade, entre outras). As saídas para temperatura costumam se dividir em dois grupos: relé ou TRIAC. A saída a relé funciona como um interruptor automático e é a mais comum. Ela irá acionar o sistema de aquecimento quando a temperatura estiver muito baixa e manterá acionado até que o setpoint seja atingido. A partir daí o liga e desliga do controlador é comandado pela histerese (diferença entre temperatura ambiente e setpoint). Já a saída TRIAC funciona de forma diferente e geralmente está associada ao controle PID. Ela aciona o sistema de aquecimento através de pulsos elétricos intermitentes que tendem a diminuir conforme a temperatura da chocadeira se aproxima do setpoint. Isso garante muito mais precisão e estabilidade no controle de temperatura da chocadeira, aumentando sua eficiência. Uma lâmpada ligada à saída TRIAC de um controlador pode ficar piscando repetidamente. Este comportamento é completamente normal e se deve aos pulsos elétricos emitidos pelo controlador. A mesma coisa ocorre quando são utilizadas resistências. No entanto, como estas não emitem luz, os pulsos elétricos não podem ser vistos. Lâmpada ou resistência elétrica: qual a melhor para a chocadeira? Os controladores de temperatura para chocadeiras geralmente podem acionar tanto lâmpadas quanto resistências elétricas. Veja abaixo as principais características de ambas as alternativas e escolha a melhor de acordo com a sua necessidade. Chocadeiras com aquecimento por lâmpadas As chocadeiras com lâmpadas foram extremamente comuns no mercado há alguns anos, mas vêm perdendo espaço. Em sua maior parte são chocadeiras caseiras, ou seja, fabricadas pelos próprios utilizadores. Geralmente são equipamentos com custo reduzido e para um número baixo de ovos. Chocadeiras que são aquecidas por lâmpadas tendem a possuir uma menor capacidade de troca de calor, mesmo que possuam um cooler para circulação do ar. Isso ocorre porque o calor está limitado à incidência luminosa das lâmpadas, ou seja, os ovos que não estiverem com tanta incidência de luz tendem a aquecer menos, gerando um desequilíbrio no tempo de chocagem de cada ovo. Este é um dos motivos pelo qual o aquecimento por lâmpadas não costuma ser utilizado para chocadeiras maiores. Apesar de o custo inicial ser menor comparado às resistências elétricas, o uso de lâmpadas gera um custo maior a longo prazo. Isso porque a vida útil das lâmpadas é menor, ou seja, será necessário substituí-las com certa frequência. É importante citar que nem todas as lâmpadas são adequadas ao uso em chocadeiras. Lâmpadas fluorescentes, por exemplo, não geram calor suficiente para aquecer os ovos a uma temperatura adequada. Se você optar por utilizar lâmpadas em sua chocadeira, certifique-se de que ela atinge a temperatura necessária antes de realizar a primeira chocagem. Chocadeiras com aquecimento por resistências elétricas As resistências elétricas possuem diversas vantagens em relação às lâmpadas para aquecimento da chocadeira. Por isso, a maioria dos fabricantes de chocadeiras utiliza resistências como sistema de aquecimento. As resistências elétricas utilizadas em chocadeiras foram desenvolvidas justamente para aquecer um ambiente. Por este motivo, alcançam maiores temperaturas. Caso a chocadeira tenha um cooler corretamente dimensionado, a troca de calor no ambiente será maior e consequentemente a chocagem será mais eficiente comparada a utilização de lâmpadas. Sendo assim a chocadeira será capaz de chocar mais ovos numa mesma leva, permitindo a construção de chocadeiras maiores. Apesar de possuir maior custo inicial comparado às lâmpadas, o uso de resistências gera economia a longo prazo. Isso porque a durabilidade das resistências é muito maior do que a de lâmpadas. Além disso, as resistências são mais eficientes na conversão de energia elétrica em calor. E agora, qual opção escolher? Depois de conhecer mais sobre as duas opções, chega a hora de escolher: lâmpada ou resistência? A verdade é que para a grande maioria dos casos a utilização de resistências elétricas será mais vantajosa. No entanto, devido ao custo inicial mais baixo, a utilização de lâmpadas incandescentes ainda pode ser vista em chocadeiras de menor porte. Independente da escolha, o fato é que para que a temperatura da chocadeira se mantenha estável é necessário um controlador de qualidade. E é neste ponto que a Ageon pode ajudar. Oferecemos diversos modelos de controladores de temperatura para chocadeiras, desde modelos básicos até modelos com controle de umidade. Os modelos G103 Color e K103, por exemplo, possuem uma saída a relé para controle de temperatura e uma saída a relé com temporização para viragem dos ovos. Já os modelos G103 PID e K103 PID possuem controle PID de temperatura, ou seja, garantem muito mais precisão e estabilidade térmica. Também possuem uma saída a relé temporizada para viragem dos ovos. Existe ainda o modelo K103 PID U, que além de todos os recursos do controlador K103 PID ainda possui controle de umidade para que sua chocadeira trabalhe em máxima eficiência. O que você achou deste post? Deixe seu comentário abaixo.

O que fazer para evitar a queima do inversor de frequência?

22/02/2019 - Dicas Ageon, Inversores de Frequência
Um inversor de frequência pode queimar por diversos motivos. Em muitos casos a queima é causada por natureza externa, ou seja, por fatores que não são relacionados a defeitos de fabricação do inversor. Nesses casos, é de extrema importância identificar o motivo da queima antes de adquirir um novo inversor. Neste post vamos falar sobre os defeitos no inversor de frequência causados por natureza externa e como evitá-los. Queima do inversor por defeitos de natureza externa Quando um inversor de frequência queima devido a problemas de natureza externa não basta substituí-lo. A simples substituição pode até resolver o problema por um tempo, mas a probabilidade de o inversor substituto queimar é bastante grande. Por esse motivo, é importante identificar a causa da queima do aparelho. Listamos abaixo alguns dos principais motivos para a queima do inversor e como evitá-los. Sobretensão na rede de alimentação Por mais que o inversor possua seu próprio sistema de proteção contra subtensões e sobretensões, uma sobretensão abrupta (pico de tensão em curto período de tempo) pode causar danos citados acima, ou mesmo a queima do inversor. É importante que os usuários de inversores monitorem constantemente a rede de alimentação durante o uso do aparelho com sua carga padrão, para que seja detectado uma não conformidade no nível de tensão. Caso o inversor aponte constantemente o erro de sobretensão no circuito intermediário (E02 nos inversores Ageon), verifique o comportamento da sua rede de alimentação. Curto-circuito entre fases ou terra do motor Outra possibilidade de não conformidade relacionada a queima desses elementos é a de curto-circuito entre fases do motor. Mesmo que, aparentemente, as conexões do motor ao inversor estejam corretas, deve-se monitorar as pontas do motor (na própria carcaça do motor) e verificar se há alguma anomalia. Um curto-circuito entre fases do motor, mesmo que por pouco tempo, pode causar a queima de um módulo de potência. Excesso de umidade e presença de água também podem ser os causadores desses curtos-circuitos entre fases. É extremamente importante garantir que a área de instalação do motor seja livre de umidade excessiva e que não haja presença de elementos que jorram/pingam água. A umidade pode prejudicar o motor tanto a curto prazo (presença de água no contato do motor) quanto a longo prazo (oxidação das partes metálicas, que futuramente irão apresentar falhas no funcionamento). Também deve-se garantir que o aterramento do sistema não tenha nenhum contato com uma fase, seja do motor ou da rede de alimentação. É extremamente necessário garantir a integridade física dos terminais do motor pois,  caso os danos nos inversores sejam causados pelo motor, o mesmo irá danificar todos os inversores que forem conectados a ele até que seja feita a troca do motor ou que suas conexões sejam reforçadas. Sobretemperatura Uma temperatura elevada pode causar dano aos módulos de potência. A faixa de temperatura de operação do inversor deve ser respeitada. Nos inversores de frequência Ageon essa faixa é de 0 a 50 °C. Caso o inversor indique sobretemperatura (erro E04 nos inversores Ageon), verifique se o ambiente onde o inversor está instalado apresenta uma temperatura acima do normal. Não é recomendado que o inversor permaneça em um ambiente excessivamente quente pois o funcionamento do inversor em si eleva sua temperatura interna de operação, principalmente se o mesmo possui um motor com uma carga próxima da máxima permitida. Um fator que influencia diretamente na temperatura de operação é a frequência de chaveamento dos IGBT. Nos inversores de frequência Ageon (com exceção do modelo IEX70) é possível ajustar a frequência de chaveamento no parâmetro P43. São disponíveis três valores para este parâmetro: 5 kHz, 10 kHz e 15 kHz. Quanto maior a frequência de chaveamento, menor será o ruído emitido pelo motor, porém, maior será a temperatura presente nos IGBTs. Portanto, ajuste a frequência de chaveamento conforme a sua necessidade. Inércia de carga elevada Quando o motor possui uma carga elevada, há um consumo excessivo de corrente na partida, o que pode prejudicar os módulos de potência. Para proteger os IGBT, garanta que o inversor esteja programado com uma rampa de aceleração proporcional à sua carga. Os inversores Ageon possuem sistemas de proteção de sobrecorrente (E05 para corrente em função do tempo e E09 para sobrecorrente por hardware). No entanto, um pico de corrente muito abrupto na partida poderá danificar permanentemente os módulos de potência. Recomenda-se então que, na homologação do sistema, sejam feitas medições de corrente com ferramentas apropriadas e verificados os valores máximos de corrente no manual. Programe rampas de maiores durações conforme a necessidade. Outros Defeitos Além dos cuidados acima, deve-se garantir que as conexões estejam corretas, tanto da parte de potência (entrada, saída do motor e relé) quanto das de baixa potência (entradas digitais e analógicas). Outra causa de problemas com o inversor de frequência é o curto-circuito nas fases da alimentação. Neste caso o defeito é fácil de ser identificado pois, na maioria das vezes, há a presença de carbonização (queima) nos terminais. Além disso, nessa situação a placa principal do inversor é danificada permanentemente, inviabilizando seu conserto. Caso você possua um inversor de frequência queimado, é importante identificar o motivo da queima antes de substituí-lo. Em muitos casos a queima do inversor está relacionada a um dos motivos citados acima. Ao substituir o dispositivo sem corrigir a causa raiz, é provável que o novo inversor seja danificado da mesma forma que o anterior . Deixe seu comentário sobre este post no formulário abaixo.

A importância e os cuidados relacionados à Compatibilidade Eletromagnética

30/01/2019 - Controladores de Temperatura, Dicas Ageon, Inversores de Frequência
O estudo sobre Compatibilidade Eletromagnética (EMC) aborda soluções para problemas relacionados a mau funcionamento de sistemas devido a ruídos. Neste post iremos fazer uma breve explicação sobre este tema e os cuidados que os montadores e instaladores que utilizam nossos produtos devem tomar para que todos os elementos sistema funcionem como deveriam, seja na parte de controladores de temperatura ou inversores de frequência. Primeiramente, para entendermos porquê devemos nos preocupar com campos magnéticos num sistema elétrico/eletrônico, precisamos entender de onde vem esse campo magnético. No final do século XIX o físico e químico Christian Orsted descobriu que um condutor elétrico (fio/cabo) gera campo magnético ao seu redor. Por sua vez, este campo magnético quando variado também gera corrente elétrica quando encontra outro condutor. Ou seja, qualquer elemento condutor de corrente está propenso a gerar e receber campo magnético no meio que está atuando. A imagem abaixo mostra este fenômeno físico: Um exemplo do cotidiano para entendermos o comportamento de campos magnéticos pelo ar é o princípio de funcionamento do rádio. O aparelho de rádio convencional basicamente capta o sinal do ar (que é um campo magnético) e converte em corrente elétrica audível. Este sinal, por sua vez, é um campo magnético gerado de uma grande fonte de energia proveniente da emissora. Nem todo sistema elétrico/eletrônico funciona com o intuito de receber ou enviar sinal pelo ar, mas mesmo assim irá gerar e receber campos magnéticos devido ao fenômeno físico citado anteriormente. É aí que surge a necessidade do estudo sobre problemas relacionados à compatibilidade eletromagnética. Caso não sejam prevenidos, os problema de EMC poderão afetar negativamente no funcionamento do sistema. A compatibilidade eletromagnética é um conceito associado a dois ou mais sistemas serem eletromagneticamente compatíveis ou não. Dentro desse conceito destacam-se duas análises: o quanto o sistema emite ruído e o quanto o sistema é susceptível à ruídos. Esses ruídos podem se propagar pela própria conexão elétrica (ruído conduzido) ou pelo ar (ruído irradiado). O ruído conduzido pode surgir de diversos fatores como chaveamentos em alta frequência, motores, elementos de alta potência, etc. O grau do ruído também pode variar pela quantidade de elementos que constituem o sistema. Há diversas análises e estudos que podem ser efetuados para resolver/prevenir problemas envolvendo compatibilidade eletromagnética, por exemplo montagem do motor, enrolamento de cabos e fios (como por exemplo par trançado), modos de aterramento, modos de roteamento de placas eletrônicas, blindagem, filtros e etc). Ou seja, há muitos cuidados a serem tomados para que o sistema não sofra problemas com interferências internas ou externas. Individualmente, os elementos das aplicações envolvendo produtos da Ageon, são fabricados/montados usando técnicas específicas para evitar problemas de EMC. Compatibilidade Eletromagnética em controladores de temperatura e inversores de frequência Se tratando de controladores de temperatura e inversores de frequência, há alguns cuidados que devem ser tomados na hora de instalar os produtos para que os ruídos da parte de potência do sistema (motor, resistência elétrica, rede elétrica e etc) não interfira no funcionamento dos elementos de comunicação e baixa potência (sensores/sondas, interface homem-máquina (IHM), ArcSys, cabos de rede e etc) e vice-versa. Ou seja, na hora da instalação e manuseio do produto, poderão haver problemas de EMC caso o sistema seja instalado sem alguns cuidados básicos específicos. Estes cuidados são os seguintes: Deve-se separar fisicamente os cabos de alta potência (motores, resistência elétrica, alimentação e etc) dos cabos/fios de comunicação (sensores, cabos de rede e cabos da IHM);Não deixar os elementos muito próximos um ao outro, por exemplo, respeitar uma certa distância entre o motor e o inversor e etc;Se tratando da precisão de temperatura, não é recomendado que o sensor fique próximo de alguma fonte de ruído como uma resistência elétrica, uma bomba d’água, motor, ventoinha e etc;Aterramento adequado e respeitando a norma NBR 5410. Os cuidados citados anteriormente sobre os fios e cabos valem para qualquer cenário de instalação, seja ele através de canaletas, fixados na parede/chão, pela tubulação e etc. E vale tanto para inversores de frequência quanto para controladores de temperatura. Entre os diversos problemas gerados por incompatibilidade eletromagnética, os que mais se destacam são: erros na leitura, imprecisão (controlador indicando uma temperatura consideravelmente errada), falha total na comunicação (por exemplo problema de comunicação entre IHM e inversor) e etc. Porém, problemas de EMC podem ocorrer de forma aleatória (sem padrão de comportamento) e muitas vezes não duram muito tempo. Quando há um descuido consideravelmente grande, poderá ocasionar uma falha que irá persistir até que o problema seja solucionado. Salientamos que os problemas de EMC existem, mas o seu grau depende de diversos fatores e, na maioria das vezes, não irão afetar no funcionamento do sistema. Os cuidados ao produto final instalado são poucos e se forem respeitados não irão causar nenhum problema. Caso você tenha alguma dúvida entre em contato com a Ageon, estamos sempre disponíveis para ajudar você a solucionar problemas relacionados a instalação do seu produto.

Tudo sobre os inversores de frequência XF Standard

09/01/2019 - Como Configurar, Inversores de Frequência, Vídeos
Os inversores de frequência XF Standard foram desenvolvidos pela Ageon para controlar a velocidade de motores trifásicos. Elem podem ser utilizados em motores de até 2CV e se destacam principalmente pela sua facilidade de instalação e programação. Nesse post apresentamos vídeos das principais dúvidas relacionadas aos inversores XF Standard. Aqui você verá desde a ligação elétrica do aparelho até a resolução de erros na sua aplicação. Como instalar o inversor de frequência XF Standard?Ajustando as rampas de aceleração e desaceleraçãoConfigurando a função do relé auxiliarCorrigindo o erro E03Corrigindo o erro E09Corrigindo o erro Sub A Ageon recomenda que a instalação do produto seja realizada por um profissional qualificado e de acordo com as normas técnicas vigentes. Como instalar o inversor de frequência XF Standard? Primeiramente vamos demonstrar no vídeo abaixo como ligar seu inversor de frequência XF Standard à rede elétrica e também ao motor. Principais ajustes do inversor XF Standard Geralmente os inversores de frequência possuem uma lista numerosa de parâmetros para ajustes. No entanto, os inversores XF Standard possuem uma quantidade reduzida de parâmetros, simplificando sua configuração e otimizando o tempo dos técnicos e instaladores. Nos vídeos abaixo você verá como configurar dois dos principais recursos dos inversores XF Standard. Ajustando as rampas de aceleração e desaceleração As rampas de aceleração e desaceleração já foram tema de posts aqui no Blog Ageon. Esses recursos servem para evitar acionamentos bruscos do motor, por exemplo. Dessa forma a vida útil do equipamento tende a aumentar. Além disso, a utilização de rampas ainda traz outros benefícios, como maior segurança para os usuários da máquina e diminuição do pico de corrente no acionamento do motor. Configurando a função do relé auxiliar Os inversores da linha XF Standard possuem uma saída a relé que pode ser utilizada em diversos processos de automação. Esta saída auxiliar pode ser acionada sempre que o motor estiver acionado, por exemplo, ou sempre que a frequência de saída do inversor ultrapassar um determinado valor. No vídeo a seguir você pode ver todos os diferentes modos de funcionamento da saída auxiliar e como configurar seu inversor em cada uma delas. Solucionando erros no inversor de frequência Durante a instalação e utilização de um inversor de frequência podem ocorrer alguns erros. Essas falhas podem ter as mais variadas causas, como problemas na rede elétrica ou defeito no motor, por exemplo. Os inversores de frequência XF Standard possuem códigos que auxiliam na identificação destes erros, facilitando o diagnóstico e resolução do problema. Nos vídeos abaixo listamos as causas e soluções dos principais erros relacionados à utilização dos inversores de frequência. Corrigindo o erro E03 Corrigindo o erro E09 Corrigindo o erro Sub O que você achou deste post? Deixe seu comentário abaixo.

Vantagens do AutomaSol para instaladores de Aquecimento Solar

12/12/2018 - Aquecimento Solar, Controladores de Temperatura
Os controladores AutomaSol são utilizados para automatizar sistemas de aquecimento solar tanto para banho quanto para piscinas. Eles possuem diversas vantagens para os usuários, como a facilidade de utilização. Neste post, no entanto, vamos falar sobre as vantagens deste modelo para os técnicos e instaladores. Se você trabalha com aquecimento solar, este post é especialmente para você. Economize seu tempo com a fixação fácil Em primeiro lugar vamos falar de uma das principais características do controladores AutomaSol: seu sistema de fixação. Diferente de outros formatos de controladores no mercado, o AutomaSol pode ser fixado diretamente em caixas 4x2. Além disso, o aparelho possui áreas destacáveis em sua parte traseira, facilitando ainda mais a passagem dos fios no caso de instalações de sobrepor. Também é possível fixar os controladores AutomaSol em uma superfície plana, como uma parede, por exemplo. O controlador possui áreas destacáveis para canaletas na sua parte inferior. A vantagem da alimentação bivolt na instalação elétrica Além da fixação fácil, a instalação elétrica dos controladores AutomaSol também é bastante simples. Uma característica bastante útil destes controladores é a alimentação bivolt (85V a 265V). Ou seja, independente se a tensão da sua rede é 110V ou 220V, a ligação elétrica do AutomaSol é exatamente a mesma. https://www.youtube.com/watch?v=HJlO3HLs7Hw Outra vantagem da alimentação bivolt é a unificação do seu estoque. Se sua área de atuação abrange localidades com tensão 110V e 220V, você não precisa de estoques separados para cada área. O mesmo produto atenderá a todos os seus clientes e será instalado exatamente da mesma forma. Teste o sistema rapidamente com o AutomaSol Você instalou todo o sistema de aquecimento solar e precisa testar o funcionamento da bomba? Ou quem sabe testar o acionamento do apoio? Com os controladores AutomaSol isso é muito prático. Esses controladores possuem teclas que permitem o acionamento automático ou manual dos equipamentos. Dessa forma você pode testar todo o sistema rapidamente pressionando poucas teclas, economizando o tempo de instalação. Dois modelos para várias aplicações em aquecimento solar A linha AutomaSol está disponível em dois modelos: AutomaSol TDI e AutomaSol TDA. Cada um deles pode ser utilizado em diversos sistemas de aquecimento solar, de acordo com a necessidade. O AutomaSol TDI é indicado principalmente para aquecimento de piscinas. Ele possui uma saída a relé para acionamento da bomba (de até 2HP) de acordo com a diferença de temperatura entre os coletores e a piscina. Já o AutomaSol TDA é mais  indicado para sistemas de aquecimento solar para banho ou residências de forma geral, ou para piscinas que possuem sistema de apoio ou filtragem. Ele possui todas as características dos modelo anterior, porém com dois recursos extras muito úteis. Um desses recursos é a segunda saída a relé, que pode ser utilizada para acionamento do apoio ou filtragem. O segundo recurso extra é a agenda de eventos, que permite o acionamento das saídas em horários programados. Agilize suas instalações de sistemas de aquecimento solar com os controladores AutomaSol e deixe seu comentário abaixo sobre este post.

Como ligar um motor trifásico em alimentação 220V?

06/12/2018 - Inversores de Frequência
A alimentação de um motor trifásico de 6 terminais ou mais é configurável. Dependendo do número de terminais (também conhecidos como pontas ou bornes), o motor pode ser configurado para alimentação em tensão 220V ou 380V, por exemplo. Neste post vamos apresentar as diferentes ligações que um motor trifásico pode ter para alimentação em 220V, de acordo com seu número de terminais.   Configurando o motor trifásico para tensão 220V Como citado anteriormente, os motores elétricos trifásicos podem ser alimentados com diferentes valores de tensão dependendo do seu número de terminais. Essa diversidade de configurações do motor não influencia na velocidade de rotação, mas influencia no torque. Quanto maior a tensão de alimentação, mais torque terá o motor. Já a velocidade de rotação do motor depende de outros fatores, como a frequência, por exemplo. Entre os motores trifásicos mais comuns estão os motores de 6 terminais. Esses motores podem ser configurados para alimentação em 380V ou 220V. Na imagem abaixo é possível visualizar um exemplo de como alterar a ligação elétrica do motor de 380V (modo estrela) para 220V (modo triângulo). [caption id="attachment_6962" align="aligncenter" width="780"] A forma de ligação pode variar de acordo com o fabricante do motor. Os motores geralmente possuem uma placa de indicação fixada na carcaça com as ligações explicadas acima. Faça as ligações respeitando a configuração demonstrada pelo fabricante.[/caption] Essa configuração da alimentação do motor trifásico é possível graças às diferentes formas de ligação das bobinas. Cada uma dessas ligações cria uma intensidade de campo magnético girante diferente durante o funcionamento do motor. Caso seu motor apresente número de terminais diferente do citado neste post, recomendamos entrar em contato com o fabricante do motor para verificar como ligá-lo em 220V.   Velocidade de um motor trifásico O controle da velocidade de um motor trifásico pode ser realizado de diversas formas. Entre as mais indicadas está a variação de frequência do motor, realizada através de um inversor de frequência. A Ageon fabrica inversores de frequência para motores trifásicos de até 5CV. Os inversores de frequência Ageon possuem alimentação 220V (monofásica ou trifásica, de acordo com o modelo) e saída 220V. Os principais modelos de inversores Ageon são a Série XF, com formato compacto, e a Série YF, com IHM destacável e potenciômetro incorporado. *** O que você achou deste post? Deixe seu cometário.

Por que utilizar Resistor de Frenagem com um Inversor de Frequência?

28/11/2018 - Inversores de Frequência
Você sabe o que é um resistor de frenagem? Esses dispositivos são utilizados em diversas aplicações junto ao inversor de frequência. Neste post você vai descobrir o que é e qual a importância de um resistor de frenagem.   O que é um Resistor de Frenagem? É um dispositivo elétrico passivo que pode ser utilizado em conjunto com o inversor de frequência para reduzir a velocidade do motor sem prejuízo aos equipamentos. Antes de apresentar sua importância, primeiramente vamos compreender melhor o que ocorre quando um motor é desacelerado. Imagine uma esteira transportadora que possui um motor acionado por um inversor de frequência. Em alguns casos essa esteira precisa parar em um período de tempo bastante curto, como 0,2 segundos, por exemplo. Para desacelerar o motor nesse tempo basta ajustar a rampa de desaceleração do inversor em um valor relativamente baixo. No entanto, a inércia da esteira (que possivelmente possui outros motores) faz com que o motor continue girando e consequentemente atue como uma fonte de energia, gerando corrente reversa no inversor. Esta é a chamada força contra eletromotriz. A força contra eletromotriz pode ser prejudicial para o inversor, podendo queimar componentes no circuito de conversão de energia ou até mesmo queimar o inversor em definitivo. Para evitar este tipo de problema, alguns modelos de inversores de frequência permitem a utilização de um resistor de frenagem. Este resistor tem a função de converter a força contra eletromotriz em calor, protegendo o inversor.   Como identificar o Resistor de Frenagem ideal? Existem diversos tipos e modelos de resistores de frenagem. O resistor ideal para cada aplicação vai variar de acordo com alguns fatores, como a potência do motor, a inércia da carga, o tempo de parada, o número de ciclos de parada, entre outros. Ou seja, são diversos fatores que interferem no funcionamento correto do sistema e que são característicos de cada situação. A Ageon recomenda a contratação de um profissional qualificado para verificar as grandezas físicas da sua aplicação e dimensione corretamente o seu resistor de frenagem. Após dimensionado o resistor, o mesmo pode ser ligado no inversor nos terminais B1 e B2 (para os modelos que possuem o mesmo).   Resistores de Frenagem em Inversores de Frequência Ageon Alguns modelos de inversores de frequência Ageon são compatíveis com resistores de frenagem. São os inversores YF Standard com potência de 3CV e 5CV. Esses inversores se destacam pela facilidade na instalação e configuração. Além disso, possuem IHM destacável e potenciômetro incorporado. *** O que você achou deste post? Deixe seu comentário abaixo.

Aterramento do inversor de frequência: como fazer?

21/11/2018 - Inversores de Frequência
O aterramento é uma medida de segurança essencial para inversores de frequência e motores elétricos. É um procedimento obrigatório e deve ser realizado de acordo com as normas técnicas vigentes. Neste post vamos ensinar a forma correta de aterrar o inversor de frequência.   Por que fazer o aterramento do inversor de frequência? Conforme citamos acima, o principal motivo para aterrar seus equipamento é a segurança dos utilizadores. O contato direto com partes metálicas de sistemas mal aterrados podem ocasionar descargas elétricas ao usuário. O cuidado deve ser redobrado quando se trata de sistemas com alimentação ou motores trifásicos, pois a descarga elétrica pode ser nociva ao corpo, levando em conta que motores geram muito ruído devido ao seu campo magnético gerado no seu funcionamento. Um dispositivo aterrado possui menor risco de choques elétricos. O aterramento facilita o funcionamento dos dispositivos de proteção, como fusíveis e disjuntores, quando há aumento de corrente. Além disso, auxilia na dissipação da corrente de fuga vinda do motor.   Como aterrar o inversor? O aterramento do inversor de frequência e do motor elétrico deve ser feito de forma separada, para que a corrente de fuga de um equipamento não interfira no funcionamento do outro. Os motores costumam possuir um terminal específico para aterramento, que é ligado à sua carcaça. Não é recomendado ligar o terra do inversor ao motor. Cada equipamento deve ter contato com o aterramento individualmente. Caso o terra do motor esteja ligado ao terra do inversor e não haja conexão com o aterramento do local, todo o ruído gerado pelo motor irá para o inversor, prejudicando seu funcionamento. Para aterrar o inversor de frequência existem diferentes maneiras de acordo com o modelo de inversor. Em alguns modelos o aterramento é feito através de parafusos em sua carcaça. Este é o caso dos inversores da Série XF, por exemplo. Esses inversores possuem dois parafusos para aterramento, conforme imagem abaixo. Já os inversores da Série YF possuem bornes específicos para conexão com o Terra de Proteção (TP). Os modelos da Série YF com alimentação monofásica possuem dois bornes para aterramento, enquanto os modelos com alimentação trifásica possuem um borne de conexão com o Terra de Proteção. Antes de instalar o inversor de frequência, atente-se aos seguintes itens: Certifique-se que o local da instalação possua estrutura para aterramento; Atente-se às normas técnicas para realizar a instalação elétrica; Contrate um profissional qualificado para instalar e configurar seu inversor de frequência. *** Este post foi útil? Deixe seu comentário abaixo.

Como monitorar a temperatura via internet com o ArcSys Cloud?

31/10/2018 - Como Configurar, Controladores de Temperatura
O ArcSys Cloud é uma plataforma na nuvem que permite monitorar a temperatura dos seus controladores pela internet. Ele traz diversas vantagens, como rapidez, praticidade e segurança, por exemplo. Neste post você verá como realizar o primeiro acesso no ArcSys Cloud para monitorar a temperatura via internet.   O que você vai precisar? Antes de mais nada vamos entender o que é necessário para utilizar o ArcSys Cloud. Se você deseja apenas monitorar a temperatura dos seus equipamentos, você precisará de um dispositivo ArcSys. Esse aparelho possui três sensores de temperatura que podem ser fixados nos locais que exigem o monitoramento. No entanto, caso você deseje algum tipo de controle (como o acionamento de um compressor ou resistência), é preciso também um controlador Web da Ageon.   Como funciona o ArcSys Cloud? Para ter acesso à temperatura dos seus equipamentos online, primeiramente seu dispositivo ArcSys deve estar instalado e conectado à internet. O procedimento é bem simples, porém você pode baixar o guia rápido de instalação do ArcSys em caso de dúvidas. O dispositivo ArcSys envia as informações dos sensores e controladores (se houverem) para a nuvem. Dessa forma, as informações podem ser acessadas através do navegador de internet de qualquer dispositivo, como um celular, tablet ou computador. Além de monitorar a temperatura via internet, é possível alterar os parâmetros dos controladores, gerar gráficos e configurar alarmes por e-mail. Tudo isso de forma rápida e online.   Primeiros passos para monitorar a temperatura via internet Depois que o dispositivo ArcSys estiver instalado e conectado à rede, você pode identificar seu endereço MAC. Esta informação pode ser obtida acessando o ArcSys localmente, no menu Configurações, na aba Conexão Local (LAN). 1 - Acesse o ArcSys Cloud e informe o endereço MAC identificado anteriormente. Clique em Próximo e em seguida informe os dados para criação da sua conta. 2 - Você receberá um e-mail de confirmação com um link para ativar sua conta. Clique no link para ser redirecionado e, posteriormente, clique em Aceitar Termos. 3 - Você receberá um e-mail com um código de acesso, que deve ser inserido na aba ArcSys Cloud, na página de Configurações ao acessar o ArcSys localmente. Habilite o envio de informações e clique em Salvar. 4 - Pronto! Você já pode acessar o ArcSys Cloud para selecionar o plano do seu interesse e começar a monitorar a temperatura dos seus equipamentos online. *** Que tal começar agora mesmo a monitorar a temperatura dos seus controladores? Deixe seu comentário abaixo.

Parâmetros de visualização dos Inversores de Frequência Ageon

12/09/2018 - Como Configurar, Inversores de Frequência
Os inversores de frequência Ageon se destacam pela facilidade de configuração. Diferente de outros modelos de inversores, os modelos da Ageon possuem um número reduzido de parâmetros, diminuindo o tempo necessário para ajuste. Além disso, alguns dos parâmetros presentes nesses aparelhos são apenas para visualização. Mas você sabia que é possível visualizar algumas informações do inversor através de parâmetros?   Para que servem os parâmetros de visualização? Esses parâmetros são utilizados principalmente para monitoramento ou diagnóstico de problemas no inversor de frequência. Através deste recurso é possível visualizar diversas informações, como a corrente de saída, por exemplo. Na maior parte das vezes a visualização destes parâmetros é feita para verificar se o inversor está funcionando conforme esperado. No entanto também é possível utilizar este recurso para auxiliar na correção de erros nos inversores.  Abaixo listamos os principais parâmetros de visualização dos inversores de frequência Ageon. Parâmetros de Visualização Código Informação Visualizada P01 Frequência de saída (motor) P02 Tensão circuito intermediário (link CC) P03 Corrente de saída (motor) P04 Tensão de saída (motor) P05 Temperatura nos IGBT´s P06 Último erro ocorrido/Últimos erros ocorridos (conforme modelo)   Tensão circuito intermediário (link CC) A tensão no circuito intermediário do inversor pode variar de acordo com a utilização. Em alguns casos é possível que o inversor apresente erro E02 ou erro E03. A principal causa para este erro é a tensão de alimentação do inversor acima ou abaixo do especificado. Além disso, também é possível que o erro E02 ocorra quando o inversor aciona uma carga com inércia elevada e passa por uma desaceleração muito rápida. Para visualizar a tensão no circuito intermediário do inversor, basta acessar o parâmetro P02. Você poderá visualizar este parâmetro a qualquer momento ou sempre que o inversor apresentar algum erro.   Corrente de saída (motor) A corrente de saída do inversor pode se alterar em algumas situações. A mais comum delas é quando o motor apresenta algum problema no enrolamento, por exemplo. Nesses casos haverá um aumento da corrente de saída e, dessa forma, o inversor detectará este aumento e apresentará erro E06 ou erro E09. Para visualizar a corrente de saída do inversor para o motor, acesse o parâmetro P03. Verifique este parâmetro sempre que o inversor apresentar um dos erros acima ou quando o motor estiver apresentando sinais de defeito.   Último erro ocorrido Este parâmetro é muito útil para o diagnóstico de problemas no inversor de frequência. Através dele é possível visualizar o último erro ocorrido no aparelho e, assim, corrigir o problema. Para isso, acesse o parâmetro P06. Ao identificar o último erro ocorrido no inversor de frequência, você precisará saber o significado dos códigos e as possíveis causas. Assim, será possível detectar a origem do problema para posteriormente corrigi-lo. *** Este post lhe foi útil? Deixe seu comentário abaixo.